

BC.Q404.REVIEW ASSESSMENTS (PART 1)

THE EARLY CHAPTERS

(25 points)

NO CALCULATORS

NAME:

DATE:

BLOCK:

I (*print name*) certify that I wrote and fully understand **all** marks made in this assessment. I did not write anything that I do not understand. I would now, having completed this assessment, be able to make similar (but equally accurate) responses if asked complete the same exact assessment on my own.

Signature:

1. Prove that $f(x) = \begin{cases} 5 + (1-x)^{5/2}; x < 1\\ 2x + 3; x \ge 1 \end{cases}$ is continuous at x = 1. Definition Required.

- 2. Use Lagrange (prime) notation to express the following derivatives
- A. $[f(g(x)+2)]^{\prime}$
- B. $[\ln(f(x)) + g(2x)]^{\prime}$

C. $\left[f^2(x) \cdot h(g(x))\right]$

3. Let
$$f(x) = \begin{cases} 5 + (1-x)^{5/2}; x < 1\\ ax + b; x \ge 1 \end{cases}$$
.

Find the values of a and b that make f(x) differentiable at x = 1.

- 4. Consider the curve $y + \cos y = x + 1$ for $0 \le y \le 2\pi$.
- A. Find $\frac{dy}{dx}$ in terms of y.
- B. Write an equation for each vertical tangent to the curve.
- C. Find $\frac{d^2y}{dx^2}$ in terms of y.
- D. Discuss the concavity of the curve when $y = \pi$. Justify.

- 5. Consider the curve C: $\sin(xy) + 2y = x + y^2 + \frac{4 \pi}{4}$
- A. Find $\frac{dy}{dx}$.
- B. Find the equation of the line tangent to the curve at the point $\left(\frac{\pi}{4}, 2\right)$

6. A particle moves from left to right along the curve $y = x + x\cos(x)$ in such a way that the *x*-coordinate increases at the rate of 8 m/s. How fast is the angle of inclination θ of the line joining the particle to the origin changing when $x = \pi/2$?

7. A conical water tank with vertex down has a radius of 16 ft at the top and is 24 ft high. Let r be the radius of the water surface and h be depth of the contained water.

If water flows out of the tank at a rate of (h-1) ft³/min, how fast is the depth of the water changing when the water is 10 ft deep? (Include units and Simplify)

Volume of a cone: $V = \frac{1}{3}\pi r^2 h$

8. Let $f(x) = x^3 + x + 5$ and g(x) be the inverse function of f. Find g'(15).

9. Let $f(x) = -x^5 - x^3 - x - 5$ and g(x) be the inverse function of f. Find g'(-2).

10. Find the derivative of $\sin^{-1}(2x^2)$