BC: Q403 CHAPTER 10 - LESSON 1 (10.1)

DEF: A plane curve is a set C of ordered pairs (x(t), y(t)), where x(t) and y(t) are continuous functions on an interval I.

DEF: Let C be the curve consisting of all ordered pairs (x(t), y(t)), where x(t) and y(t) are continuous on an interval I. The equations x = x(t) and y = y(t), for t in I, are parametric equations for C with parameter t.

NOTES
$$\frac{dy}{dx}$$
:

NOTES
$$\frac{d^2 y}{dx^2}$$
:

THM: The length of a *smooth* curve y = f(x) from x = a and x = b is given by

THM: If a *smooth* curve C is given parametrically by x = x(t), y = y(t); $a \le t \le b$, and if C does not intersect itself, except possibly for t = a and t = b, then the length L of C is

THM: Let a smooth curve C be given by x = x(t), y = y(t); $a \le t \le b$, and suppose C does not intersect itself, except possibly for t = a and t = b. If $y(t) \ge 0$ throughout [a, b], then the area S of the surface of revolution obtained by revolving C about the x-axis is

$$S = \int_{a}^{b} 2\pi y ds = \int_{a}^{b} 2\pi \left(y(t)\right) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

THM: Let a smooth curve C be given by x = x(t), y = y(t); $a \le t \le b$, and suppose C does not intersect itself, except possibly for t = a and t = b. If $x(t) \ge 0$ throughout [a, b], then the area S of the surface of revolution obtained by revolving C about the y-axis is

$$S = \int_{a}^{b} 2\pi x ds = \int_{a}^{b} 2\pi \left(x(t)\right) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

Example 1: Let C be the curve that has parametrization

x = 2t, $y = t^2 - 1$, $-1 \le t \le 2$.

a. Sketch the graph of *C* by hand by plotting several points and joining them with a smooth curve. *Indicate the orientation*

- b. Find the slopes of the tangent line and normal line to *C* at any point P(x,y).
- c. Obtain an equation for the curve in the form y = f(x) for some function f.
- d. Use a graphing utility to plot a graph of C. Set the viewing window so that it contains the entire graph.
- e. Find the length of C.
- f. Find $\frac{d^2 y}{dx^2}$ and discuss its implications.

		TY III				
	: 3.75	ł				
	3.5	t				
	2.25					
	5.25	T				
	-					
	2.75	ł				
	2.5	ł				
	0.05					
	4.40	t				
		L				
	1.75	l.				
	1.5	ł				
	1.25	t				
		T			1	
	0.75	l.				
	0.5	÷				
	1					
	0.25	ł				~
						1
-2	-1	0	1	2	3	4
2	-0.25	l~	~		ř.	
1 1	0.20					
	-0.5	ŧ				
1	-0.75	t				
	-1					
		Γ				
	-1.25	l.				
	1110					
	-1.5	ł				
	-1.75	t				
	1					

Example 2: A point moves in a plane such that its position P(x,y) at time *t* is given by $x = a \cos t$, $y = a \sin t$; $t \ge 0$, where *a* is a constant greater than 0.

- a. Describe the motion of the point.
- b. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for varying values of *t*.
- c. Find the length of C from t = 0 to $t = 2\pi$.

Example 3: Sketch the graph of the curve C that has the parametrization:

 $x = -2 + t^2$, $y = 1 + 2t^2$; $t \in \Re$. What geometric shape does *C* make?

			÷									
			y									
		6										
•••••		5										
•••••	1	4	+			1						
)						
		-										
												×
												Ĵ
-	2 -	1	0	1	2	3	4	5	6	7	18	9
			+									
1												

Example 4: Let C be the curve with parametrization $x = e^{-t}$, $y = e^{2t}$; $t \in \Re$ a. Find dy/dx and the equation of the tangent line to C at the point when $t = \ln(2)$. b. d^2y/dx^2 and discuss the concavity of the curve C.

c. Use a calculator to find the length of *C* from t = 1 to t = 10.

Example 5: Suppose the curve C defined as $x = \cos t$ and $y = 2 + \sin t$ for $0 \le t \le 2\pi$ is rotated about the *x*-axis. Without a calculator, find the area of the resulting figure and describe the shape.

Q402: Lesson 1 Homework

I. Textbook: Chapter 10.1: #9, 11, 16, 17, 26, 27, 30, 43

II. Supplemental

A. Find an equation in x and y whose graph contains the points on the curve C. Sketch the graph of C and indicate the orientation.

1.	x = t - 2	y = 2t + 3	$0 \le t \le 5$
2.	$x = 4t^2 - 5$	y = 2t + 3	$t \in \Re$
3.	$x = 2\sin t$	$y = 3\cos t$	$0 \le t \le 2\pi$
4.	$x = \sec t$	$y = \tan t$	$-\pi/2 < t < \pi/2$

B. Find the slopes of the tangent line and the normal line at the point on the curve that corresponds to t = 1.

5.
$$x = t^{2} + 1$$
 $y = t^{2} - 1$ $-2 \le t \le 2$
6. $x = e^{t}$ $y = e^{-2t}$ $t \in \Re$

C. Let C be the curve with the given parametrization, for t in \Re . Find the points on C at which the slope of the tangent line is m.

7.
$$x = -t^3$$
 $y = -6t^2 - 18t$ $m = 2$

D. (1) Find the points on the curve C at which the tangent line is either horizontal or vertical. (2) Find $d^2 y/dx^2$.

8. $x = 4t^2$ $y = t^3 - 12t$ $t \in \Re$

E. Find the length of the curve.

9. $x = 5t^2$	$y = 2t^3$	$0 \le t \le 1$
10. $x = e^t \cos t$	$y = e^t \sin t$	$0 \le t \le \pi / 2$

F. Find the area of the surface generated by revolving the curve about the *x*-axis.

11. $x = t^2 \qquad y = 2t \qquad 0 \le t \le 4$

G. Find the area of the surface generated by revolving the curve about the *y*-axis. (Review Integration by Parts)

12. $x = e^t \sin t$ $y = e^t \cos t$ $0 \le t \le \pi/2$

BC: Q403 CHAPTER 10 - LESSON 2 (10.2)

Consider a curve C in \Re^2

Parametric Equation for C:

Vector Equation for C:

Position Function:

Velocity Function:

Acceleration Function:

Speed:

Differential Equations Method of finding a position function:

Solve for the constant of integration

FTC2 Method of finding a position function:

EXAMPLE 1: (No Calculator)

A particle moves in the xy-plane so that any time t its coordinates are $x = t^2$ and $y = 4 - t^3$.

- A. Find the speed of the particle at t = 1.
- B. Find the acceleration vector at t = 1.

EXAMPLE 2: (No Calculator)

A particle moves in the *xy*-plane so that its velocity vector at time *t* is $v(t) = \langle t^2, \sin(\pi t) \rangle$ and the

particle's position vector at time t = 0 is (1,0).

A. Find the speed of the particle at time t = 3

B. Find the position vector of the particle when t = 3.

EXAMPLE 3: (Calculator Required)

A particle moves in the *xy*-plane so that it velocity at time *t* is $v(t) = \left\langle e^{\sqrt{t}} - t, \sin(\sqrt{t+1}) \right\rangle$ and the

particle's position vector at time t = 1 is (2, -3).

A. Find the position vector of the particle when t = 4.

B. Find the distance traveled by the particle on $1 \le t \le 4$.

EXAMPLE 4: (Calculator Required)

An object moving along a curve in the xy-plane has position (x(t), y(t)) at time t with

$$\frac{dx}{dt} = \cos(t^3)$$
 and $\frac{dy}{dt} = 3\sin(t^2)$

for $0 \le t \le 3$. At time t = 2, the object is at position (4, 5).

- (a) Write an equation for the line tangent to the curve at (4, 5).
- (b) Find the speed of the object at time t = 2.
- (c) Find the total distance traveled by the object over the time interval $0 \le t \le 1$.
- (d) Find the position of the object at time t = 3.

EXAMPLE 5: (No Calculator)

A moving particle has position (x(t), y(t)) at time *t*. The position of the particle at time t = 1 is (2,6), and the velocity vector at any time t > 0 is given by $\left(1 - \frac{1}{t^2}, 2 + \frac{1}{t^2}\right)$.

- (a) Find the acceleration vector at time t = 3.
- (b) Find the position of the particle at time t = 3.
- (c) For what time t > 0 does the line tangent to the path of the particle at (x(t), y(t)) have a slope of 8?
- (d) The particle approaches a line as $t \to \infty$. Find the slope of this line. Show the work that leads to your conclusion.

CH10 LESSON 2 HOMEWORK

1 (No Calculator). The position of a moving particle in the *xy*-plane is given by parametric equations $x(t) = 9\cos t$ and $y(t) = 4\sin t$ for $t \ge 0$.

- A. Find the speed of the particle at $t = \pi/3$
- B. Find the acceleration vector at t = 3.

2 (No Calculator). A particle moves in the *xy*-plane so that any time t, t > 0, its coordinates are $x = e^t \sin t$ and $y = e^t \cos t$. Find the velocity vector at $t = \pi$.

3 (No Calculator). The velocity vector of a particle moving in the *xy*-plane is given by $\vec{v} = \langle 2 \sin t, 3 \cos t \rangle$ for $t \ge 0$. At t = 0, the particle is at the point (1, 1). What is the position vector at t = 2?

4 (Calculator Required). The velocity vector of a particle moving in the *xy*-plane is given by $\vec{v} = \langle \sqrt{1+t^2}, \sin(e^t - 4) \rangle$ for $t \ge 0$. At t = 0, the particle is at the point (-3, 1). What is the position vector at t = 2?

HW #5 (Calculator Required)

A particle moves in the *xy*-plane so that its position at any time $t, 0 \le t \le \pi$, is given by

$$x(t) = \frac{t^2}{2} - \ln(1+t)$$
 and $y(t) = 3\sin t$

(a) Sketch the path of the particle in the *xy*-plane below. Indicate the direction of motion along the path.

- (b) At what time t, $0 \le t \le \pi$, does x(t) attain its minimum value? What is the position (x(t), y(t)) of the particle at this time?
- (c) At what time t, $0 < t < \pi$, is the particle on the y-axis? Find the speed and the acceleration vector of the particle at this time.

HW #6 (No Calculator)

- A particle moves along the curve defined by the equation $y = x^3 3x$. The *x*-coordinate of the particle, x(t), satisfies the equation $\frac{dx}{dt} = \frac{1}{\sqrt{2t+1}}$, for $t \ge 0$ with initial condition x(0) = -4.
 - (a) Find x(t) in terms of t.
 - (b) Find $\frac{dy}{dt}$ in terms of t.
 - (c) Find the location and speed of the particle at time t = 4.

HW #7 (Calculator Required)

During the time period from t = 0 to t = 6 seconds, a particle moves along the path given by $x(t) = 3\cos(\pi t)$ and $y(t) = 5\sin(\pi t)$.

- (a) Find the position of the particle when t = 2.5.
- (b) On the axes provided below, sketch the graph of the path of the particle from t = 0 to t = 6. Indicate the direction of the particle along its path.

- (c) How many times does the particle pass through the point found in part (a)?
- (d) Find the velocity vector for the particle at any time t.
- (e) Write and evaluate an integral expression, in terms of sine and cosine, that gives the distance the particle travels from t = 1.25 to t = 1.75.

BC: Q403 CHAPTER 10 - LESSON 3 (10.3)

Notes Outline for Polar Calculus

Polar Function: $r = f(\theta)$

For $r \ge 0$ and $\theta \ge 0$:

r at point P is the distance from the origin to the point P.

 θ at point P is the counterclockwise angle between the *x*-axis and the line segment connecting the origin and a point

1. Graph the following given in polar form: $(2, \pi/3)$; $(-3, \pi)$; r = 2; $\theta = \pi/4$; $r = 2 + 2\cos\theta$

2. Covert each polar point to a Cartesian point: $(\sqrt{2}, \pi/4)$; (1,0); $(-3, 5\pi/6)$ Notes: $x = r \cos \theta$ and $y = r \sin \theta$, but why?

3. Convert each polar equation to a Cartesian equation:

Notes: $x^2 + y^2 = r^2$, but why? a. $r\sin\theta = 0$ 10.5 #19 b. $r = 4 \csc \theta$ 10.5 #21 c. $r\cos\theta + r\sin\theta = 1$ 10.5 #23 What is the domain of $f(\theta)$ to complete exactly one d. $r^2 = 4r\sin\theta$ 10.5 #25 revolution of the curve? Is it $0 \le \theta \le \pi$ or is it $0 \le \theta \le 2\pi$? e. $r^2 \sin 2\theta = 2$ 10.5 #27 Each curve is different. Use polar MODE to graph. Use f. $r = a \sin \theta$ BERMEL WINDOW to check from $\alpha = 0$ to $\beta = \pi$ or 2π . g. $r = \cot \theta \csc \theta$ 10.5 #28 See page 557: 11-20 ¥ ▼ 4.- \bullet (a) Sketch $r = 2 + 2\cos\theta$ Derive formula for dy/dx: \rightarrow (b) Find dy/dx for $r = 2 + 2\cos\theta$ Derive formula for area enclosed: (c) Find the area enclosed by $r = 2 + 2\cos\theta$ \rightarrow (d) Find the area inside $r = 2 + 2\cos\theta$ but outside r = 3. (e) Find the area outside $r = 2 + 2\cos\theta$ but inside r = 3. (f) Find the area inside both $r = 2 + 2\cos\theta$ and r = 3. *Derive formula for polar length: (g) *Find the length of $r = 2 + 2\cos\theta$ on $0 \le \theta \le 2\pi$. 5. Convert from Cartesian to Polar $(-1, 1); (1, -\sqrt{3}); (0, 3)$ y = xHOMEWORK in TEXTBOOK x = 7Section 10.3: 41, 46, 47, 53, 56, 57, 58, 59 $x^{2} + y^{2} = 4$ Section 10.3: 1 – 9 odd; 21 - 29 odd, 16, 17 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ $x^{2} + (y-2)^{2} = 4$

1. The diagram above shows the graphs of $r = 4\cos(2\theta)$ and r = 2. Set up, but do not evaluate, an expression involving one or more integrals, used to find the area of the light shaded region.

2. Revisit HW #47 Find the area within one loop of $r^2 = 4\cos(2\theta)$

3. Text Problem #48. Find the area inside the curve $r^2 = 2\sin(3\theta)$.

4. Consider $r = 3\cos(\theta) + 2$. Set up, but do not evaluate, an expression involving one or more integrals used to find the area inside the large loop but outside the small loop.

CHAPTER 10 [THE BASICS] REVIEW

1(NC). A curve is parametrized by $x = t^2 + 5$ and $y = e^{2t}$.

A. Find
$$\frac{dy}{dx}$$
 B. Find $\frac{d^2y}{dx^2}$

2(NC). Find the length of the curve parametrized by $x = \frac{1}{6} (4t+1)^{3/2}$ and $y = t^2$ on $1 \le t \le 5$.

3(Calc). A curve is generated by x = 12t and $y = \frac{t^2}{2} + 4$ on $5 \le t \le 9$. Find the area of the surface generated by revolving the curve about the *y*-axis.

7. The position vector of a particle in the plane is given by $\vec{\mathbf{r}}(t) = [\ln(t+2)]\mathbf{i} + [t^2 - 2]\mathbf{j}$ on $-2 < t \le 2$

A(Calc). Draw the graph of the particle.

B(NC). Find the velocity and acceleration vectors.

8(NC). Solve the initial value problem for **r** as a vector function of *t*. $\frac{dr}{dt} = \langle 3e^{3t}, 2t \rangle, \vec{\mathbf{r}}(0) = \langle 1, -4 \rangle.$

9(Calc). At time t = 1, a particle starts has the position (1,2) and continues to moves along a curve C. The velocity of a particle moving along the curve C is given by: $\vec{v}(t) = \langle \ln \sqrt{t}, -\cos(e^t) \rangle$. Find the position of the particle at time t = 3.1.

12(Calc). Graph the polar curve given by $r = 1 + 2\cos(2\theta)$.

13(NC). Suppose a polar graph is symmetric about the x-axis and contains the point $\left(4, \frac{\pi}{6}\right)$.

Which of the following identifies another point that must be on the graph?

I. $\left(4, -\frac{\pi}{6}\right)$ II. $\left(4, \frac{5\pi}{6}\right)$ III. $\left(-4, \frac{5\pi}{6}\right)$ (A)I only (B)II only (C)III only (D) I and II (E) I and III

14(NC). Replace the polar equation $r = \sec^2(\theta)$ by an equivalent Cartesian equation.

15(NC). Find the slope of the polar curve $r = -2\cos(3\theta)$ at $\theta = \frac{\pi}{6}$

16(Calc). Find the area of the region enclosed by the oval limacon $r = 5 - 2\cos\theta$.

17(NC ... check with Calc). Find the length of the polar curve given by $r = 5 \sin^2 \frac{\theta}{2}$ for