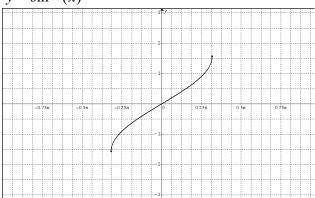
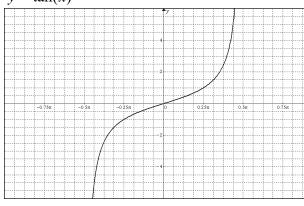
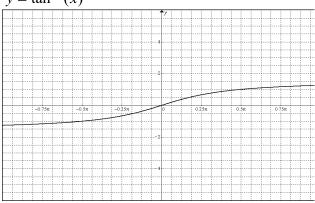
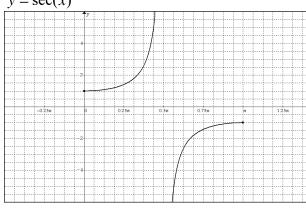
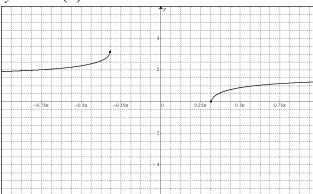

AB.Q202.NOTES: Chapter 3.8, 3.9 – Lesson 1


Quick Reference








$y = \tan^{-1}(x)$

$$y = \sec(x)$$

$y = \sec^{-1}(x)$

Development of Inverse Trigonometric Function Derivatives

Development of Transcendental Function Derivatives

Practice Problems

LESSON 1 HW

Section 3.8: #1 - 21 odd, 35-40 M.C. Section 3.9: #5-25 odd, 31, 49

(LEAVE THE ANSWERS UNSIMPLIFIED)				
SECTION 3.8	SECTION 3.9			
1. $y = \cos^{-1}(x^2)$ Find $\frac{dy}{dx}$	5. $y = e^{2x/3}$ Find $\frac{dy}{dx}$			
3. $y = \sin^{-1} \sqrt{2}t$ Find $\frac{dy}{dt}$ 5. $y = \sin^{-1} \frac{3}{t^2}$ Find $\frac{dy}{dt}$	7. $y = e^2 x - e^x$ Find $\frac{dy}{dx}$			
7. $y = x \sin^{-1} x + \sqrt{1 - x^2}$ Find $\frac{dy}{dx}$ 9. $x = \sin^{-1} \left(\frac{t}{4}\right)$ Find $x'(3)$	9. $y = e^{\sqrt{x}}$ Find $\frac{dy}{dx}$			
9. $x = \sin \left(\frac{1}{4}\right)$ Find $x(3)$ 11. $x = \tan^{-1} t$ Find $x'(2)$	11. $y = 8^x$ Find $\frac{dy}{dx}$			
13. $y = \sec^{-1}(2s+1)$ Find $\frac{dy}{ds}$	13. $y = 3^{\csc x}$ Find $\frac{dy}{dx}$			
15. $y = \csc^{-1}(x^2 + 1)$, $x > 0$ Find $\frac{dy}{dx}$ 17. $y = \sec^{-1}\frac{1}{t}$, $0 < t < 1$ Find $\frac{dy}{dt}$	15. $y = \ln(x^2)$ Find $\frac{dy}{dx}$			
19. $y = \cot^{-1} \sqrt{t-1}$ Find $\frac{dy}{dt}$	17. $y = \ln\left(\frac{1}{x}\right)$ Find $\frac{dy}{dx}$			
21. $y = \tan^{-1} \sqrt{x^2 - 1} + \csc^{-1} x$, $x > 1$	19. $y = \ln(\ln x)$ Find $\frac{dy}{dx}$			
Find $\frac{dy}{dx}$	21. $y = \log_4 x^2$ Find $\frac{dy}{dx}$			
	23. $y = \log_2\left(\frac{1}{x}\right)$ Find $\frac{dy}{dx}$			
	25. $y = \ln 2 \cdot \log_2 x$ Find $\frac{dy}{dx}$			

3.9 #31

A line with slope m passes through the origin and is tangent to $y = \ln(2x)$.

What is the value of m?

3.9 #49

Find an equation for the line tangent to the graph of $y = e^x$ and goes through the origin.

3.8 #35-40 Multiple Choice

- 35. True or False The domain of $y = \sin^{-1}x$ is $-1 \le x \le 1$. Justify your answer.
- **36. True or False** The domain of $y = \tan^{-1}x$ is $-1 \le x \le 1$. Justify your answer.
- 37. Multiple Choice Which of the following is $\frac{d}{dx} \sin^{-1} \left(\frac{x}{2} \right)$?

 - (A) $-\frac{2}{\sqrt{4-r^2}}$ (B) $-\frac{1}{\sqrt{4-r^2}}$ (C) $\frac{2}{4+r^2}$

- **(D)** $\frac{2}{\sqrt{4-x^2}}$ **(E)** $\frac{1}{\sqrt{4-x^2}}$
- **38. Multiple Choice** Which of the following is $\frac{d}{dx} \tan^{-1}(3x)$?
- (A) $-\frac{3}{1+9x^2}$ (B) $-\frac{1}{1+9x^2}$ (C) $\frac{1}{1+9x^2}$
- (D) $\frac{3}{1+9x^2}$ (E) $\frac{3}{\sqrt{1-9x^2}}$
- **39. Multiple Choice** Which of the following is $\frac{d}{dx} \sec^{-1}(x^2)$?
- (A) $\frac{2}{r\sqrt{r^4-1}}$ (B) $\frac{2}{r\sqrt{r^2-1}}$ (C) $\frac{2}{r\sqrt{1-r^4}}$
- (D) $\frac{2}{x\sqrt{1-x^2}}$ (E) $\frac{2x}{\sqrt{1-x^4}}$
- 40. Multiple Choice Which of the following is the slope of the tangent line to $y = \tan^{-1}(2x)$ at x = 1?
 - (A) -2/5 (B) 1/5 (C) 2/5 (D) 5/2 (E) 5

LESSON 1 HW EXTENSION

1. IN Section 3.8 #5 $\frac{dy}{dt} = \frac{1}{\sqrt{1 - \left(\frac{3}{t^2}\right)^2}} \cdot -6t^{-3}$ This answer simplifies to $\frac{-6}{t\sqrt{t^4 - 9}}$.

SHOW HOW.

2. IN Section 3.8 #17 $\frac{dy}{dt} = \frac{1}{\left|\frac{1}{t}\right| \sqrt{\left(\frac{1}{t}\right)^2 - 1}} \cdot \frac{-1}{t^2}$ This answer simplifies to $\frac{-1}{\sqrt{1 - t^2}}$.

SHOW HOW.

3. IN Section 3.8 #37 $\frac{dy}{dx} = \frac{1}{\sqrt{1 - \left(\frac{x}{2}\right)^2}} \cdot \frac{1}{2}$ This answer simplifies to $\frac{1}{\sqrt{4 - x^2}}$.

SHOW HOW.

AB.Q202.NOTES: Chapter 3.8, 3.9 – Lesson 2

PART I. Derivatives with Log Properties and Logarithmic Differentiation

First Using Log Properties to Find a Derivative

Logarithmic Differentiation

Part II. Calculus of General Inverses Functions

THM: If the domain of a function f is an interval on which f'(x) > 0 $\forall x$ or which f'(x) < 0 $\forall x$, then f has an inverse.

$$f'(x) > 0$$
 implies that f is increasing.
 $f'(x) < 0$ implies that f is decreasing.

FORMULA:

Example: Consider $f(x) = x^5 + x + 1$ on $(-\infty, \infty)$.

1. Prove that the inverse of f(x) is also a function?

2. Find the slope of the inverse function f^{-1} at x = 3.

EXAMPLE 2: $f(x) = 2x^3 + 5x + 3$

EXAMPLE 3: $f(x) = 5x^3 + x - 7$

EXAMPLE 4: $f(x) = 2x^5 + x^3 + 1$ Let $g(x) = f^{-1}(x)$

Formula Development

Task: Construct a relationship between the slope of a function f at (a, b) and the slope of the inverse function at (b, a).

LESSON 2 HW

Section 3.9 #43, 45, 46, and 47 + MC 2 and 3 Section 3.8 #28, 29 + extra problem

- 3.9 #43: $y = (\sin x)^x$, $0 < x < \pi/2$. Find $\frac{dy}{dx}$ using logarithmic differentiation.
- 3.9 #45: $y = \sqrt[5]{\frac{(x-3)^4(x^2+1)}{(2x+5)^3}}$. Find $\frac{dy}{dx}$ using logarithmic differentiation.
- 3.9 #45: $y = \frac{x\sqrt{x^2 + 1}}{(x+1)^{2/3}}$. Find $\frac{dy}{dx}$ using logarithmic differentiation.
- 3.9 #47: $y = x^{\ln x}$. Find $\frac{dy}{dx}$ using logarithmic differentiation.
 - 2. Multiple Choice Which of the following gives dy/dx

$$if y = \cos^3(3x - 2)?$$

(A)
$$-9\cos^2(3x-2)\sin(3x-2)$$

(B)
$$-3\cos^2(3x-2)\sin(3x-2)$$

(C)
$$9\cos^2(3x-2)\sin(3x-2)$$

(D)
$$-9\cos^2(3x-2)$$

(E)
$$-3\cos^2(3x-2)$$

3. Multiple Choice Which of the following gives dy/dx

$$if y = \sin^{-1}(2x)?$$

(A)
$$-\frac{2}{\sqrt{1-4x^2}}$$
 (B) $-\frac{1}{\sqrt{1-4x^2}}$ (C) $\frac{2}{\sqrt{1-4x^2}}$ (D) $\frac{1}{\sqrt{1-4x^2}}$ (E) $\frac{2x}{1+4x^2}$

(D)
$$\frac{1}{\sqrt{1-4x^2}}$$
 (E) $\frac{2x}{1+4x^2}$

- 3.8 #28: Let $f(x) = x^5 + 2x^3 + x 1$
- (A) Prove that the inverse of f is also a function
- (B) Find f(1) and f'(1)
- (C) Find $f^{-1}(3)$ and $(f^{-1})^{/}(3)$
- 3.8 #29: Let $f(x) = \cos x + 3x$. Also let $g(x) = f^{-1}(x)$
- (A) Prove that the inverse of f is also a function
- (B) Find g'(1)

EXTRA PROBLEM: Find a positive value of x = a such that the tangent to $f(x) = x^2 + 4$ at x = a also passes through the point (0,2).

AB.Q202.NOTES: Chapter 3.8, 3.9 – Lesson 3 PRACTICE EXAMINATION

SEE HAND WRITTEN PRACTICE EXAM (PDF)