
AB CALCULUS 
 

Q102 
 

LIMITS and CONTINUITY FOR 
CALCULUS 

 
 

NO CALCULATORS  
 
  



AB CALCULUS Q102: Limits – Lesson 1 
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Summary of Analytic techniques to find the limit of a function as x approaches a real number: 
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6. 
 

Definition of Vertical Asymptote of a function f: 

 

 

 

 

 

TWO-ONE SIDED LIMIT THEOREM: 

 

  



AB.Q102.LESSON 1 – HW: 

 

Textbook Section 2.1: 

11, 18, 19, 22, 49, 35, 51, 62, 37, 43 

Textbook Section 2.2: 

13, 14, 27, 53 

These have been typed out on the next page. 

  



Section 2.1 .  Find the limit or state the limit does not exist. 
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37.  True or False 

 

Section 2.2.  Find the limit or state the limit does not exist. 
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Write limit statements for any vertical asymptotes of the graph of ( )f x . 

Write limit statements for any horizontal asymptotes of the graph of ( )f x . 

  



AB CALCULUS Q102: Limits Continued – Lesson 2 (Part 1) 
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Definition of a Horizontal Asymptote: 

  



AB CALCULUS Q102: CONTINUITY – Lesson 2 (Part 2) 

Definition of a function f continuous at ax = : 

 

 

 

  



EXAMPLE: 
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AB CALCULUS Q102: IVT – Lesson 2 (Part 3) 

Intermediate Value Theorem (the no-duh theorm) 
 
If f is continuous on a closed interval [a, b], then f takes on all values between f(a) to f(b). 
 

 

 

 

Example:  Let )(xfy =  be continuous on [-4, 2] with corresponding values as shown in the 
table below: 
x -4 -3 -2 -1 0 1 2 
f(x) -139 72 41 2 -3 -4 17 
 
 
A.  How many times will )(xfy = obtain the value of -120?  Justify using the intermediate value 
theorem. 
 
 
 
 
 
 
 
 
 
 
 
 
B.  How many zeros will )(xfy = obtain on the interval [-4, 2]?  Justify using the intermediate value 
theorem.  
 
 
 
 
 
 
 
 
 

  



AB.Q102.LESSON 2 – HW:  

 
CONTINUITY at  x = a :  Read Section 2.3 
 
1.  Prove that is or is not continuous at . 
 
 

2.  Prove that  is or is not continuous at . 

 
 

3.  Prove that is or is not continuous at . 

 
 

4.  Prove that  is or is not continuous at . 

 
 

5.  A.  Prove that is not continuous at .   

     B.  Extend g(x), making it a piecewise function that is continuous at . 
 
 
 

6.  A.  Prove that is not continuous at .   

     B.  Extend d(x), making it a piecewise function that is continuous at . 
 
 

7.  Prove that  is or is not continuous at    

Hint:  See the Sandwich Theorem of Limits. 
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LESSON 2 HW CONTINUED … 
Section 2.3 #23, 41 – 44, 47 
 
23.  Find all domain values of x such that ( )f x is not continuous. (proof not required).  Classify the 
discontinuity as a jump, removable, or infinite discontinuity. 
 

 
41-44:  Sketch a possible graph for a function f that has the given properties. 
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44.  ( )f x is continuous for all x except 1x = .  f has a removable discontinuity at 1x = . 
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Section 2.2 #6, 9, 22 
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