

AB.Q403.REVIEW ASSESSMENT (PART F)

Derivative Tests and Miscellaneous Concepts

(20 points)

NO CALCULATORS

NAME:

DATE:

BLOCK:

I <u>(print name)</u> certify that I wrote **all** marks made in this assessment. I did not write **anything** that I do not fully understand. I would now, having completed this assessment, be able to make similar (but equally accurate) responses if asked complete the same exact assessment on my own.

Signature:

x	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3	3	3 < x < 4
f(x)	-1	Negative	0	Positive	2	Positive	0	Negative
f'(x)	4	Positive	0	Positive	DNE	Negative	-3	Negative
f''(x)	-2	Negative	0	Positive	DNE	Negative	0	Positive

1.

Let *f* be a function that is continuous on the interval [0, 4). The function *f* is twice differentiable except at x = 2. The function *f* and its derivatives have the properties indicated in the table above, where DNE indicates that their derivatives of *f* do not exist and x = 2.

A. For 0 < x < 4, find all values of x at which f has a local extremum. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify your answer.



B. On the axes provided, sketch the graph of a function that has all the characteristics of f.

1 Continued...

1	x	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3	3	3 < x < 4
	f(x)	-1	Negative	0	Positive	2	Positive	0	Negative
	$f'(\mathbf{x})$	4	Positive	0	Positive	DNE	Negative	-3	Negative
	f''(x)	-2	Negative	0	Positive	DNE	Negative	0	Positive

Let *f* be a function that is continuous on the interval [0, 4). The function *f* is twice differentiable except at x = 2. The function *f* and its derivatives have the properties indicated in the table above, where DNE indicates that their derivatives of *f* do not exist and x = 2.

C. Let g be the function defined by $g(x) = \int_{1}^{x} f(t) dt$ on the open interval (0,4). For 0 < x < 4,

find all values at which g has a relative extremum. Determine whether g has a relative maximum or relative minimum at each of these values. Justify your answer.

D. For the function g defined in part C, find all values of x, for 0 < x < 4, at which the graph of g has a point of inflection. Justify your answer.

x	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

2. The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at select values of x. The function h is given by h(x) = f(g(x)) - 6.

- A. Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.
- B. Explain why there must be a value of c for 1 < c < 3 such that h'(c) = -5.

C. Let w be the function given by $w(x) = \int_{1}^{g(x)} f(t)dt$. Find the value of w'(3).

D. If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y = g^{-1}(x)$ at x = 2.

3. Let f be the function given by $f(x) = \frac{\ln x}{x}$ for all x > 0. The derivative of f is given by

$$f'(x) = \frac{1 - \ln x}{x^2}.$$

A. Write an equation for the line tangent to the graph of *f* at $x = e^2$

B. Find the x-coordinate of the critical point of f. Determine whether this point is a relative minimum, relative maximum, or neither for the function f. Justify your answer. C. The graph of the function f has exactly one point of inflection. Find the x-coordinate of this

point.