AB: Q203 – LESSON 4: PRACTICE EXAMINATION

TECHNOLOGY SECTION: Round answers to three decimal places.

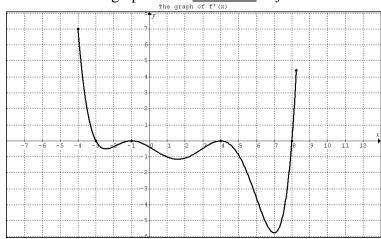
- 1. The velocity of a particle moving along a horizontal is given as $v(t) = 8\cos(t) + \ln(\sin(t) + t^2)$ on $0.1 < t \le 8$
- A. On what time interval is the particle moving to the right? Justify.
- B. What are the velocity and acceleration at time t = 5?
- C. Is the particle speeding up or slowing down at t = 3.5? Justify.

- 2. The derivative of f is given by $f'(x) = e^{x^2} 5x^3 + x$ on $0 \le t < 3$
- A. On what interval is f decreasing? Justify.
- B. At what *x*-value(s) does *f* have a relative maximum? Justify.
- C. On what interval is f concave upward? Justify.

NO TECHNOLOGY SECTION

1. (SKIP - THIS QUESTION WILL BE USED IN Q204)

Let f be defined by $f(x) = \ln(2 + \sin x)$ for $\pi \le x \le 2\pi$.

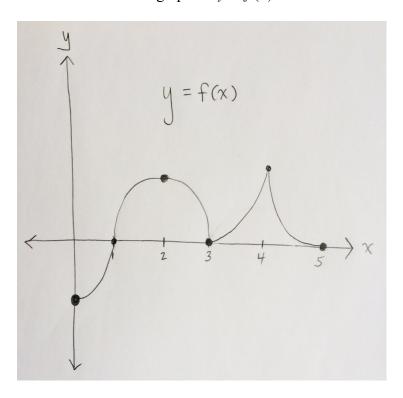

Find the absolute maximum value and the absolute minimum value of f using the closed interval test.

- 2. Let $f''(x) = (x-1)(x+2)^2 e^{x^2}$.
 - A. When is the graph of f(x) concave upward? Justify.
 - B. How many points of inflection are on f? Justify.

3. A particle moves along a horizontal line. It's position at time t is given as $s(t) = \frac{2}{3}t^3 - \frac{5}{2}t^2 - 3t$.

On what time interval is the particle slowing down? Justify.

4. Consider the graph of the *derivative* of f below.



A. For what x – value(s) does f have a local minimum? Justify.

- B. On what interval is f increasing? Justify.
- C. Estimate the interval(s) on which f is concave upward? Justify.
- D. How many points of inflection are on f? Justify.

GRAPH THEORY

5. Below is Steven's graph of y = f(x).

THE CHART REPRESENTS STEVEN'S GRAPH

X	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3	3	3 < x < 4	4	4 < <i>x</i> < 5	5
f(x)									+		
f'(x)			DNE								
f''(x)											

FILL IN EACH BLANK IN THE CHART ABOVE WITH ONE OF THE FOLLOWING:

+ for positive

for negative

0 for zero

DNE for Does not Exist